422 research outputs found

    A Feud that Wasn't: Acetylcholine Evokes Dopamine Release in the Striatum

    Get PDF
    In this issue of Neuron, Threlfell et al. (2012) report that synchronous activation of cholinergic interneurons evokes striatal dopamine release by activating presynaptic nicotinic acetylcholine receptors. These findings call for a fundamental reevaluation of the long-standing view that dopamine and acetylcholine “feud” over control of striatal circuitry

    Delayed Spine Pruning of Direct Pathway Spiny Projection Neurons in a Mouse Model of Parkinson’s Disease

    Get PDF
    In animal models of Parkinson’s disease (PD), principal striatal spiny projection neurons (SPNs) lose axospinous synapses. However, there has been a disagreement about whether this loss is restricted to a specific type of SPN or not, as some studies have reported pruning in both direct pathway SPNs and indirect pathway SPNs, while others have found this pruning to be restricted to indirect pathway SPNs. One possible explanation for the discrepancy is the period between the induction of the parkinsonian state and the assessment of spine loss. To test this hypothesis, transgenic mice were subjected to unilateral 6-hydroxydopamine (6-OHDA) lesions of nigrostriatal dopaminergic neurons and then direct pathway SPNs examined in ex vivo brain slices using two photon laser scanning microscopy either one or 2 months afterwards. These studies revealed that 1 month after the lesion, there was no loss of spines in direct pathway SPNs. However, 2 months after the lesion, spine loss was significant in direct pathway SPNs. In addition to reconciling the existing literature on the impact of the parkinsonian state on axospinous synapse elimination in SPNs, our results suggest that the delayed spine loss in direct pathway SPNs is not driven by homeostatic mechanisms [as posited for indirect pathway (iSPNs)], but rather by network pathophysiology

    Interneuronal Nitric Oxide Signaling Mediates Post-synaptic Long-Term Depression of Striatal Glutamatergic Synapses

    Get PDF
    SummaryExperience-driven plasticity of glutamatergic synapses on striatal spiny projection neurons (SPNs) is thought to be essential to goal-directed behavior and habit formation. One major form of striatal plasticity, long-term depression (LTD), has long appeared to be expressed only pre-synaptically. Contrary to this view, nitric oxide (NO) generated by striatal interneurons was found to induce a post-synaptically expressed form of LTD at SPN glutamatergic synapses. This form of LTD was dependent on signaling through guanylyl cyclase and protein kinase G, both of which are abundantly expressed by SPNs. NO-LTD was unaffected by local synaptic activity or antagonism of endocannabinoid (eCb) and dopamine receptors, all of which modulate canonical, pre-synaptic LTD. Moreover, NO signaling disrupted induction of this canonical LTD by inhibiting dendritic Ca2+ channels regulating eCb synthesis. These results establish an interneuron-dependent, heterosynaptic form of post-synaptic LTD that could act to promote stability of the striatal network during learning

    Mutant huntingtin enhances activation of dendritic Kv4 K+ channels in striatal spiny projection neurons

    Get PDF
    Huntington\u27s disease (HD) is initially characterized by an inability to suppress unwanted movements, a deficit attributable to impaired synaptic activation of striatal indirect pathway spiny projection neurons (iSPNs). To better understand the mechanisms underlying this deficit, striatal neurons in ex vivo brain slices from mouse genetic models of HD were studied using electrophysiological, optical and biochemical approaches. Distal dendrites of iSPNs from symptomatic HD mice were hypoexcitable, a change that was attributable to increased association of dendritic Kv4 potassium channels with auxiliary KChIP subunits. This association was negatively modulated by TrkB receptor signaling. Dendritic excitability of HD iSPNs was rescued by knocking-down expression of Kv4 channels, by disrupting KChIP binding, by restoring TrkB receptor signaling or by lowering mutant-Htt (mHtt) levels with a zinc finger protein. Collectively, these studies demonstrate that mHtt induces reversible alterations in the dendritic excitability of iSPNs that could contribute to the motor symptoms of HD

    Targeting the pedunculopontine nucleus in Parkinson’s disease: Time to go back to the drawing board

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/147041/1/mds27540.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/147041/2/mds27540_am.pd

    Nitric oxide regulates synaptic transmission between spiny projection neurons

    Get PDF
    Recurrent axon collaterals are a major means of communication between spiny projection neurons (SPNs) in the striatum and profoundly affect the function of the basal ganglia. However, little is known about the molecular and cellular mechanisms that underlie this communication. We show that intrastriatal nitric oxide (NO) signaling elevates the expression of the vesicular GABA transporter (VGAT) within recurrent collaterals of SPNs. Down-regulation of striatal NO signaling resulted in an attenuation of GABAergic signaling in SPN local collaterals, down-regulation of VGAT expression in local processes of SPNs, and impaired motor behavior. PKG1 and cAMP response element-binding protein are involved in the signal transduction that transcriptionally regulates VGAT by NO. These data suggest that transcriptional control of the vesicular GABA transporter by NO regulates GABA transmission and action selection.United States Army Medical Research Acquisition Activity (Grant W81XWH-09-1-0108

    Cell type-specific plasticity of striatal projection neurons in parkinsonism and L-DOPA-induced dyskinesia

    Get PDF
    The striatum is widely viewed as the fulcrum of pathophysiology in Parkinson’s disease (PD) and L-DOPA-induced dyskinesia (LID). In these disease states, the balance in activity of striatal direct pathway spiny projection neurons (dSPNs) and indirect pathway spiny projection neurons (iSPNs) is disrupted, leading to aberrant action selection. However, it is unclear whether countervailing mechanisms are engaged in these states. Here we report that iSPN intrinsic excitability and excitatory corticostriatal synaptic connectivity were lower in PD models than normal; ​L-DOPA treatment restored these properties. Conversely, dSPN intrinsic excitability was elevated in tissue from PD models and suppressed in LID models. Although the synaptic connectivity of dSPNs did not change in PD models, it fell with ​L-DOPA treatment. In neither case, however, was the strength of corticostriatal connections globally scaled. Thus, SPNs manifested homeostatic adaptations in intrinsic excitability and in the number but not strength of excitatory corticostriatal synapses

    Learning intrinsic excitability in medium spiny neurons

    Full text link
    We present an unsupervised, local activation-dependent learning rule for intrinsic plasticity (IP) which affects the composition of ion channel conductances for single neurons in a use-dependent way. We use a single-compartment conductance-based model for medium spiny striatal neurons in order to show the effects of parametrization of individual ion channels on the neuronal activation function. We show that parameter changes within the physiological ranges are sufficient to create an ensemble of neurons with significantly different activation functions. We emphasize that the effects of intrinsic neuronal variability on spiking behavior require a distributed mode of synaptic input and can be eliminated by strongly correlated input. We show how variability and adaptivity in ion channel conductances can be utilized to store patterns without an additional contribution by synaptic plasticity (SP). The adaptation of the spike response may result in either "positive" or "negative" pattern learning. However, read-out of stored information depends on a distributed pattern of synaptic activity to let intrinsic variability determine spike response. We briefly discuss the implications of this conditional memory on learning and addiction.Comment: 20 pages, 8 figure

    Dopamine-modulated dynamic cell assemblies generated by the GABAergic striatal microcircuit

    Get PDF
    The striatum, the principal input structure of the basal ganglia, is crucial to both motor control and learning. It receives convergent input from all over the neocortex, hippocampal formation, amygdala and thalamus, and is the primary recipient of dopamine in the brain. Within the striatum is a GABAergic microcircuit that acts upon these inputs, formed by the dominant medium-spiny projection neurons (MSNs) and fast-spiking interneurons (FSIs). There has been little progress in understanding the computations it performs, hampered by the non-laminar structure that prevents identification of a repeating canonical microcircuit. We here begin the identification of potential dynamically-defined computational elements within the striatum. We construct a new three-dimensional model of the striatal microcircuit's connectivity, and instantiate this with our dopamine-modulated neuron models of the MSNs and FSIs. A new model of gap junctions between the FSIs is introduced and tuned to experimental data. We introduce a novel multiple spike-train analysis method, and apply this to the outputs of the model to find groups of synchronised neurons at multiple time-scales. We find that, with realistic in vivo background input, small assemblies of synchronised MSNs spontaneously appear, consistent with experimental observations, and that the number of assemblies and the time-scale of synchronisation is strongly dependent on the simulated concentration of dopamine. We also show that feed-forward inhibition from the FSIs counter-intuitively increases the firing rate of the MSNs. Such small cell assemblies forming spontaneously only in the absence of dopamine may contribute to motor control problems seen in humans and animals following a loss of dopamine cells. (C) 2009 Elsevier Ltd. All rights reserved
    • …
    corecore